Nanofiber matrices for local control of pediatric solid tumors after subtotal resection surgery

<u>Angel M Carcaboso^{1,2*}</u>, Carles Monterrubio^{1,2}, Guillem Pascual-Pasto^{1,2}, Monica Vila-Ubach^{1,2}, Jose A Tornero^{3,4}, Alejandro Sosnik^{5,6}, Jaume Mora^{1,2}

¹Preclinical Therapeutics and Drug Delivery Research Program, Developmental Tumor Biology Laboratory, Fundació Sant Joan de Déu, Santa Rosa 39-57, Esplugues de Llobregat, 08950 Barcelona, Spain.

²Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu Barcelona, Passeig Sant Joan de Déu 2, Esplugues de Llobregat, 08950 Barcelona, Spain

³Institut de Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER), Universitat Politecnica de Catalunya, Colom 15, Terrassa, 08222 Barcelona, Spain

⁴Cebiotex Biomedical Nanofibers, Parc Cientific de Barcelona, Baldiri i Reixac 4, 08028 Barcelona, Spain

⁵Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, Israel

⁶Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Technion City, Haifa, Israel

^{*}Contact: +34 936009751; amontero@fsjd.org (A.M. Carcaboso).

Abstract

Local tumor control in pediatric oncology requires new treatments as an alternative to radiotherapy. SN-38 is an anticancer drug with proved activity against several pediatric solid tumors including neuroblastoma, rhabdomyosarcoma and Ewing sarcoma. Taking advantage of the extremely low aqueous solubility of SN-38, we have developed a novel drug delivery system (DDS) consisting of matrices made of poly(lactic acid) electrospun polymer nanofibers loaded with SN-38 microcrystals for local release in difficult-to-treat pediatric solid tumors. To model the clinical scenario, we conducted extensive preclinical experiments to characterize the biodistribution of the released SN-38 using microdialysis sampling *in vivo*. We observed that the drug achieves high concentrations in the virtual space of the surgical bed and penetrates a maximum distance of 2 mm within the tumor bulk. Subsequently, we developed a model of subtotal tumor resection in clinically relevant pediatric patient-derived xenografts and used such models to provide evidence of the activity of the SN-38 DDS to inhibit tumor regrowth. We propose that this novel DDS could represent a potential future strategy to avoid harmful radiation therapy as a primary tumor control together with surgery.